If you intend to use an inertial measurement system...  
... which technical data you should analyze and compare before making your decision  
by Dr.-Ing. Edgar v. Hinüber, CEO iMAR Navigation GmbH  
Keywords: inertial navigation system, inertial measurement system, inertial measurement unit, attitude heading reference sys-  
tem, inertial sensor, gyroscope, accelerometer, angular random walk, bias, drift, free inertial, unaided inertial navigation, GNSS  
denied, aided navigation, INS, IMU, IMS, AHRS  
Preface  
Indeed, it is often very challenging for both inexperienced and advanced  
users of inertial technology to make the right decision in an environment  
of complex marketing information about which of the various inertial  
measurement systems, inertial navigation systems, attitude and heading  
reference systems, inertial measurement units, or at least inertial sen-  
sors on the market best and most economically meets their require-  
ments.  
With this article, we aim to help the reader better understand the physics  
behind inertial navigation or inertial measurement systems and sensors,  
and to evaluate the information. We also aim to enable you to better val-  
idate the datasheets provided by suppliers, identify inconsistencies that  
are unfortunately often present, and find your best technical and eco-  
nomic solution. Only in this way can you be sure that the product you select truly meets your requirements.  
Tatsächlich ist es oft sehr schwierig, sowohl für unerfahrene als auch für fortgeschrittene Benut-  
zer von Trägheitstechnologie, im Umfeld vielschichtiger Marketing-Informationen die richtige Ent-  
scheidung zu treffen, welches der verschiedenen Trägheitsmesssysteme, Trägheitsnavigations-  
systeme, Lage-Kurs-Referenzsysteme, Trägheitsmessgeräte oder zumindest Trägheitssensoren  
auf dem Markt am besten und wirtschaftlichsten ihren Anforderungen entspricht.  
Mit diesem Artikel helfen wir dem Leser, die Physik hinter der Trägheitsnavigation oder den Träg-  
heitsmesssystemen und Sensoren besser zu verstehen und die Informationen zu bewerten. Wir  
versuchen auch, Sie besser in die Lage zu versetzen, die Datenblätter der Anbieter selbst zu  
validieren, leider oft vorhandene Inkonsistenzen zu identifizieren und Ihre beste technische und  
wirtschaftliche Lösung zu finden. Nur so können Sie sicher sein, dass das von Ihnen ausgewählte  
Produkt tatsächlich Ihren Anforderungen genügt.  
Introduction into Inertial Measurement Technology:  
Inertial navigation and guidance systems were initially developed for rocket guidance and control. Today,  
their applications span a wide range of fields, from horizontal directional drilling deep underground to  
spacecraft navigation. In fact, inertial technology has become an integral part of everyday life. For exam-  
ple, every modern car is equipped with at least one gyroscope and two accelerometers for the Electronic  
Stability Program (ESP) or airbag control, ensuring safe travel even in challenging conditions. Likewise,  
every smartphone incorporates accelerometers, gyroscopes, a GNSS receiver, and a magnetometer.  
A typical Inertial Navigation System (INS) relies on gyroscopes (angular rate sensors) and accelerome-  
ters as its primary sensors. Gyroscopes are used to determine the vehicle's orientation, compensating  
for gravitational effects on the accelerometer data. This process involves solving a complex set of differ-  
ential equations in real-time to convert the sensor measurements into estimates of velocity, position,  
attitude, and heading, based on a known initial position in latitude and longitude.  
Modern Inertial Navigation Systems (INS) commonly utilize 'strap-down' technology, where all inertial  
sensors (gyroscopes and accelerometers) are rigidly mounted to the vehicle. In earlier designs, 'gimbal'  
technology was used, with gyroscopes mechanically stabilizing accelerometers in space. In strap-down  
systems, stabilization is achieved through mathematical calculations, subjecting all inertial sensors to the  
iMAR  
10/2024 rev. 2.51 DocNo.: DOC181020012 technical modifications reserved w/o notice  
1(19)  
vehicle's full dynamic range. Despite the absence of mechanical gimbals, strap-down systems are signif-  
icantly more robust operationally than gimbaled systems, although they demand higher sensor range,  
scale factor accuracy, and sensor durability.  
All unaided inertial navigation systems experience drift over time, as small measurement errors accumu-  
late, resulting in progressively larger errors in velocity and, especially, position due to double integration  
over time. The methods for compensating and correcting this drift, particularly in real-time applications,  
differ substantially across market solutions. Only suppliers who excel in providing unaided inertial navi-  
gation with the highest performance especially under challenging environmental conditions, often re-  
garded as the 'king class of inertial measurement technology' are capable of delivering compelling  
solutions for aided navigation scenarios as well.  
Control theory, particularly Kalman filter-based techniques, provides a framework for integrating comple-  
mentary data from various sensors, a process known as sensor data fusion. Common supplementary  
sensors used to support INS-based systems include satellite navigation systems like GPS, GALILEO,  
BeiDou and GLONASS (GNSS), as well as odometers, air data sensors, magnetometers, radio position-  
ing systems, and more. Additionally, specific techniques such as Zero Velocity Update (ZUPT) and Posi-  
tion Update (PUPT) can enhance accuracy for particular applications. (Link)  
The significant risks of other signal processing methods, such as AI-based approaches, which are  
often greatly underestimated by inexperienced users, are discussed in a dedicated chapter of this paper,  
particularly regarding their use not only in safety-critical or reference measurement applications.  
Trägheitsnavigations- und -führungssysteme wurden ursprünglich zur Steuerung von Raketen  
entwickelt. Heutzutage werden sie in vielen Anwendungen eingesetzt, von der horizontalen Rich-  
tungsbohrtechnik tief unter der Erdoberfläche bis zur Navigation von Raumfahrzeugen. Heutzu-  
tage kommt jeder täglich mit Trägheitstechnologie in Kontakt: Zum Beispiel enthält jedes mo-  
derne Auto mindestens ein Gyroskop und zwei Beschleunigungssensoren für das ESP (elektro-  
nisches Stabilitätsprogramm) oder für die Airbag-Steuerung, um das Reisen auch in schwierigen  
Umgebungen so sicher wie möglich zu machen. Auch jedes Smartphone enthält heute Beschleu-  
nigungssensoren, Gyroskope sowie einen GNSS-Empfänger und ein Magnetometer.  
Ein typisches Trägheitsnavigationssystem (INS, inertial  
navigation system) verwendet als Sensoren Gyroskope  
(Drehratensensoren) und Beschleunigungssensoren.  
Die Gyroskope werden dabei verwendet, um die Orien-  
tierung des Fahrzeugs zu bestimmen und insbesondere  
auch, um die Messdaten der Beschleunigungssensoren  
in Bezug auf die Schwerkraft zu kompensieren. Das be-  
deutet, eine große Menge an Differentialgleichungen in  
Echtzeit zu lösen, um diese Messwerte in Schätzungen  
von Geschwindigkeiten, Position, Lage und Kurs umzu-  
wandeln, ausgehend von einer bekannten Anfangsposi-  
tion in Breiten- und Längengrad.  
Die heutige Implementierung von Trägheitsnavigations-  
systemen (INS) erfolgt in der sogenannten "strap-down"-Technologie, bei der alle Trägheits-  
sensoren (Gyroskope und Beschleunigungssensoren) steif am Fahrzeug montiert sind. In der  
Vergangenheit wurden die Systeme in der sogenannten "gimbal"-Technologie entworfen, bei der  
die Gyroskope verwendet wurden, um die Beschleunigungssensoren mechanisch im Raum zu  
stabilisieren. In strap-down-Systemen erfolgt die Stabilisierung mathematisch, und daher sind  
alle Trägheitssensoren den vollen Fahrzeugdynamiken ausgesetzt. Aufgrund fehlender mecha-  
nischer Gimbals sind die strap-down-Systeme im Betrieb viel robuster als die gimballed Systeme,  
aber die Anforderungen an den Messbereich, die Skalenfaktorgenauigkeit und die Robustheit der  
Sensoren sind entsprechend höher.  
Alle ungestützten Trägheitsnavigationssysteme leiden aufgrund der erforderlichen mathemati-  
schen Integration von Drehraten und Beschleunigungen zur Bestimmung der Lagewinkel und  
Position unter einer zeitabhängigen Drift, weil kleine Fehler in den Messungen zu progressiv grö-  
ßeren Fehlern in Geschwindigkeit und insbesondere Position aufgrund der doppelten Integration  
über der Zeit führen. In der Kompensation und Korrektur dieser Drift insbesondere in  
iMAR  
10/2024 rev. 2.51 DocNo.: DOC181020012 technical modifications reserved w/o notice  
2(19)  
Echtzeitanwendungen unterscheiden sich die am Markt angebotenen Lösungen ganz erheblich.  
Nur wer als Systemlieferant die ungestützte Trägheitsnavigation (free inertial navigation, unaided  
navigation) als „Königsklasse der Inertialmesstechnik“ in schwierigen Umgebungsbedingungen  
führend beherrscht und anbieten kann, der kann auch für gestützte Navigationslösungen (aided  
navigation) überzeugende Lösungen liefern.  
Regelungstechnik im Allgemeinen und insbesondere Kalman-Filter basierte Verfahren bieten den  
Rahmen für die Kombination von Informationen aus verschiedenen komplementären Sensoren  
die sogenannte Sensordatenfusion. Die hierfür am häufigsten ergänzenden Sensoren, die zur  
Stützung INS-basierter Systeme verwendet werden, sind Satellitennavigationssysteme wie GPS,  
GALILEO, GLONASS, (GNSS), Odometer, Luftdatensensoren, Magnetometer, Funkortungs-  
systeme usw. Des weiteren erlauben besondere Methoden wie ZUPT, PUPT (Zero Velocity Up-  
date, Position Update) usw. anwendungsspezifische Genauigkeitsverbesserungen. (Link)  
Die signifikanten und von unerfahrenen Anwendern zumeist deutlich unterschätzen Risiken  
anderer Signalverarbeitungsmethoden wie KI basierter Verfahren für den Einsatz nicht nur in  
sicherheitsrelevanten oder Referenzmesstechnik-Anwendungen werden in einem eigenen Kapi-  
tel in dieser Abhandlung erörtert.  
The right INS for your Application:  
It is a big difference to operate an inertial measurement  
system in static lab conditions or low dynamic environment or in the "real-world".  
Check the performance of the IMS (IMS = inertial measurement system) for the envi-  
ronment you want to operate the system in. Link  
Will it be used on an aircraft (transportation aircraft, helicopter, drone or  
fighter?),  
or on a rail vehicle (surface or underground?),  
or on a passenger car or a truck or a tank,  
or on a naval ship, a ferry or a speed boat or on an underwater surveying  
vehicle,  
or inside of a missile or a torpedo,  
or will it be used e.g. in a drilling application or in pipeline surveying or for  
machinery guidance,  
or will it be used e.g. to acquire the field of gravity with high accuracy?  
To support your needs as best as possible, you can send us the Inquiry Form  
from our web site, filled with your application related information:  
Compare the conditions of operation given in the data sheet of the system intended  
to be used: Is the condition well defined and will it meet your application requirements?  
Will GNSS be available in your application in the way as it is assumed inside  
the data sheets of the systems you are investigating?  
Do you require operation also in GNSS denied environment, e.g. under jam-  
ming or spoofing impacts? Is the solution, described in the datasheet, able  
to handle operation in such GNSS denied environment?  
What is the behavior of the system under coning motion, under vibration and  
under temperature gradients?  
What operation mode is required for your application and is the advertised  
solution able to comply? See the next chapters of this paper regarding free  
inertial navigation, pure inertial navigation, aided navigation, surveying,  
ZUPT and PUPT aiding, ...)  
Do you need accurate, reliable and available results of the system during  
your data sensitive or safety critical missions or anywhere, where you have  
to rely on the data output? Then any AI based solution might not be the right  
iMAR  
10/2024 rev. 2.51 DocNo.: DOC181020012 technical modifications reserved w/o notice  
3(19)  
choice even if it might be slightly cheaper in purchasing. Cost should be  
compared in case of a failed mission due to an unpredicted AI decision.  
Sensor Technology Selection and Sensor Data Fusion:  
Each inertial sensor  
technology has its specific advantages and drawbacks which have to be considered  
regarding the foreseen application and desired accuracy. Some sensor technologies  
come e.g. with a very high stability of sensor performance (e.g. ring laser gyros) while  
others are for instance optimized for very light weight or low cost, but being affected  
by possible accuracy aging effects (like MEMS based sensors).  
Inertial Sensors: Take into consideration that MEMS based gyros (working on Cori-  
olis law using vibratory excitation) as well as spinning dynamical tuned gyros (DTG)  
show a so-called g-dependent drift, i.e. they produce a drift (angular rate offset) de-  
pendent on linear and quad-  
ratic acceleration and environ-  
mental vibration impacts. High  
performance ring laser gyros  
(RLG = ring laser gyros) and  
hemispherical resonator gyro-  
scopes (HRG) as well as mid  
performance fiber optical gy-  
ros (FOG) do not show such  
GNSS  
pos & vel & stddev  
& raw data  
Output  
pos, vel, attitude, hea-  
ding, rates, accels, std-  
devs, time, status, BIT,  
raw data etc.  
ODO/VMS  
pulses / CAN  
Ext Aid  
Accel / Rate  
6 axes raw data  
temperatures  
pos / vel / mag / air /  
DVL / LiDAR…, stddev,  
time stamp  
g-dependent  
drift,  
while  
higher performance fiber optical gyros (FOG) also show performance degradation due  
to physical reasons, caused by vibration impacts and temperature gradients.  
Sensor Data Fusion: The signal processing on system level (“sensor data fusion”)  
has to take care for all sensor errors. Therefore, the iMAR sensor data fusion is able  
e.g. not only to estimate the common inertial sensor offsets, but also estimates and  
compensates the scale factor drifts, misalignments and other effects in real-time  
(more than 40 states are estimated, compared to the classical and most common  
implementations of competitors with only 15 states). (Link)  
With over 30 years of experience in sensor data fusion and integration, iMAR  
incorporates all state-of-the-art gyro technologies and performance classes in its sys-  
tems, ranging from MEMS to FOG, RLG, and HRG, depending on the application  
requirements. The company utilizes a robust real-time sensor data fusion process with  
more than 40 states to estimate and compensate for most residual errors and even  
the aging effects of inertial sensors. Link  
Additional complementary sensors can also be integrated into the sensor data fusion  
process, such as GNSS (single and dual antenna), wheel sensor data (odometer,  
VMS), DVL (Doppler Velocity Log), EM-Log, magnetometer data (magnetic heading  
though caution is advised with these sensors, as they are highly sensitive to envi-  
ronmental influences that cannot be compensated for if they change during the mis-  
sion), air data sensors, and more.Link  
The physics underlying the mathematics of inertial navigation is, among other things,  
described by Newton's axioms. While the fundamental mathematical framework and  
solutions to navigation equations have been well known for many decades, the real  
challenge lies in implementing these solutions in a robust, efficient, highly reliable,  
and readily available manner. Achieving this requires a vast amount of experiential  
knowledge, which the iMAR team has accumulated over more than 30 years across  
hundreds of different applications.  
In the absence of such expertise, less experienced providers of PNT solutions may  
find it tempting to turn to so-called artificial intelligence (AI) methods, as these can  
quickly demonstrate promising results in a well-trained environment. AI techniques  
iMAR  
10/2024 rev. 2.51 DocNo.: DOC181020012 technical modifications reserved w/o notice  
4(19)  
are well-established in fields like image, speech, and video processing, particularly  
where the physical modeling of phenomena remains challenging for engineers and  
scientists. However, because the learning processes of AI agents are only sporadi-  
cally verifiable, there is a consensus among experienced users and experts that AI-  
based systems should not be employed in mission-critical or safety-relevant applica-  
tions. The real behavior of these systems cannot be entirely predicted, posing a sig-  
nificant risk to the mission.  
At iMAR, we firmly believe that only physics has to determine the behavior of our  
measurement systems. Our deterministic real-time results arise from the intelligent  
signal processing conducted by our experienced engineers and scientists, not from  
opaque AI. Our customers choose our systems because they value the exceptional  
reliability, availability, and accuracy of our solutions, even in critical missions during  
daily operations. We achieve this through our mathematically and physically pre-  
cise algorithms and intentionally not through AI (artificial intelligence) interpreted  
so-called measurement results”.  
AI methods are utilized in our work only in areas where they can contribute, such as  
object detection or classification, and do not have any safety-critical implications.  
Die Physik, der die Mathematik der Inertialnavigation folgt, wird u.a. durch die  
Newton’schen Axiome beschrieben. Während die grundsätzliche mathematische  
Beschreibung und Lösung der Navigationsgleichungen seit vielen Jahrzehnten  
allgemein bekannt ist, liegt die besondere Herausforderung darin, die Lösung  
robust, effizient, hochgradig zuverlässig und verfügbar zu realisieren. Hierzu be-  
darf es eines enormen Erfahrungswissens, welches sich das iMAR-Team in über  
30 Jahren in hunderten verschiedener Anwendungen erarbeitet hat und täglich  
weltweit demonstriert.  
Kann man auf ein solches Wissen nicht aufsetzen, erscheint es für einen Anbi-  
eter von PNT-Lösungen auf den erste Blick sehr attraktiv, auf Metoden der sog.  
künstlichen Intelligenz (KI) zu ersetzen, denn hiermit kann er im trainierten  
Umfeld recht schnell passable Lösungen vorzeigen. KI-Verfahren sind bestens  
in Bereichen der Bild-, Sprach- und Videomanipulation etabliert und insb. dort,  
wo eine physikalische Beschreibung von Sachverhalten den Anwendern heute  
noch schwer fällt. Da der Lernprozess solcher KI-Agenten jedoch nur sporadisch  
prüfbar ist, ist es in erfahrenen Anwenderkreisen Konsenz, dass auf KI-  
Methoden basierte Systeme nicht in Daten- oder sicherheitsrelevanten Anwen-  
dungen zum Einsatz kommen, da das reale Verhalten derartiger Systeme nicht  
hinreichend voraussagbar ist, womit ein enormes Sicherheitsrisiko gegeben sein  
kann.  
Deshalb gilt bei iMAR: Nur die Physik bestimmt das Verhalten unserer Mess-  
systeme. Unsere deterministischen Echtzeitergebnisse entstehen durch die in-  
telligente Signalverareitung unserer projekterfahrenen Ingenieure und Wissen-  
schaftler, und nicht durch intransparente KI. Unsere Kunden verwenden un-  
sere Systeme, denn sie schätzen die außerordentliche Zuverlässigkeit, Ver-  
fügbarkeit und Genauigkeit unserer Lösungen auch in kritischen Missionen im  
täglichen Einsatz. Dies erreichen wir durch unsere mathematisch-physikalisch  
präzisen Algorithmen - und ganz bewusst nicht durch AI (artificial inteligence)  
interpretierte sogenanten "Messergebnissen".  
AI-Methoden kommen bei uns nur dort zum Einsatz, wo diese z.B. bei Ob-  
jekterkennung oder Klassifizierung einen Beitrag liefern können abr keinen  
sicherheitsrelevanten Einfluss haben.  
Gyro Bias:  
If the inertial system operates unaided (without odometer/velocity or GNSS or mag-  
netometer aiding or similar), the gyro bias indicates the increase of the angular error  
over time (in deg/h or deg/s). If the system is aided with speed information (e.g.  
iMAR  
10/2024 rev. 2.51 DocNo.: DOC181020012 technical modifications reserved w/o notice  
5(19)  
odometer / wheel sensor or Doppler log), the roll and pitch gyro drift can be compen-  
sated in the measurement system by sensor data fusion and the gyro drift mainly  
affects the heading accuracy over time. If the system consists of low drift gyros, also  
the true heading can be estimated using gravity and earth rate information (so-called  
north-seeking or gyro compassing).  
If the system is aided with position information (e.g. GPS or GALILEO or GLONASS  
or LiDAR etc.), also the heading drift can be corrected and true heading can be ob-  
tained (even with medium grade performance gyros), if the applied motion dynamics  
is sufficient, i.e. if the heading state is observable in the Kalman filter1. But of course  
the smaller the gyro drift the better all possible angular corrections and the longer the  
allowed time where the aiding information may be not present (e.g. GPS in urban  
canyons)!  
If the system is operated in free inertial navigation mode, the gyro bias is responsible  
for the position and velocity error over time (so-called Schuler oscillation).  
Gyro Scale Factor Error:  
This is an indication of the angular error which occurs during ro-  
tation. E.g. with 300 ppm scale factor error (=0.03%) the angular error is in the area  
of 0.1 degree after a one revolution turn. With a ring laser gyro or hemispherical res-  
onator gyro system with < 10 ppm scale factor error the angular error is less than 1  
arcsec (0.0003 deg) if the rotation angle is 30 deg.  
Misalignment:  
A misalignment between the gyro axes (or accelerometer axes) causes a cross-  
coupling between the measurement axes. A misalignment of 0.1 mrad inside of the  
system (e.g. residual calibration mismatch) leads to a roll error of 0.036 degree during  
a one revolution turn around the yaw axis (if the system is unaided). The smaller the  
required misalignment, the higher the requirements to sensor performance and cali-  
bration equipment (e.g. iMAR's multi-axes turn-tables).  
Accelerometer Offset:  
An  
offset in an accel-  
erometer intro-  
duces an error  
during alignment,  
specifically in the  
determination of  
the initial roll and  
pitch angles, as it  
directly affects the  
accuracy of meas-  
uring gravity (ap-  
proximately 9.81  
m/s²). For in-  
stance, an offset  
of 0.1 mg results  
in an angular error  
of about 0.006 de-  
grees in either  
pitch or roll (0.1  
mg = g × sin(0.006  
deg)). These sen-  
sor offsets can be  
estimated during  
operation through  
15 °/h/sqrt(Hz) resp. 0.25 °/sqrt(hr)  
0.8 °/hr  
Allan Variance of a gyro  
1
Observability means, that the sensor data fusion has enough information available to estimate certain states like gyro bias or  
heading. Example: If an aircraft flies always straight forward at constant speed, it is impossible to estimate vertical gyro bias or  
heading using a single antenna GNSS aiding, because due to the mentioned motion no significant acceleration or angular rate  
will be measured.  
iMAR  
10/2024 rev. 2.51 DocNo.: DOC181020012 technical modifications reserved w/o notice  
6(19)  
the system’s integrated Kalman filter data fusion, utilizing GPS, DGPS, RTK data, or  
the Zero Velocity Update Procedure (ZUPT), provided there is sufficient motion dy-  
namics.  
Bandwidth:  
In general, the dynamic performance of an inertial measurement system (IMS) im-  
proves with higher internal sampling rate and bandwidth of the inertial sensors. Proper  
internal data synchronization (time stamping) is also essential for accurate signal pro-  
cessing, especially when the IMS operates in challenging dynamic environments. A  
high-precision internal time reference and hardware-based time stamping for all data  
are crucial for ensuring reliable performance in an INS. Furthermore, low latency in  
data output is mandatory for utilizing an INS in trajectory or attitude control applica-  
tions, such as those involving autonomous vehicles.  
Gyro Random Walk:  
This value, expressed in deg/sqrt(hr), represents the noise of the gyro  
used. A larger value indicates more noise in the measured angular rates and angles.  
Some manufacturers also specify this as noise density in deg/h/sqrt(Hz). Both values  
are equivalent for white noise gyro output; dividing the second value by 60 converts it  
to deg/sqrt(hr). An angular random walk (ARW) of 0.003 deg/sqrt(hr) suggests that  
the angular error (uncertainty) due to random walk is approximately 0.001 deg after 6  
minutes (unaided) or 0.0004 deg after 1 minute (all values reported as one sigma).  
The angular random walk is crucial for the accuracy of north-seeking, as halving the  
random walk reduces the time required for north-seeking by a factor of four, provided  
the gyro’s resolution is sufficiently high.  
The accompanying plot of the Allan Variance for a mid-performance gyro graphically  
illustrates the square-root ARW of a MEMS gyro (to obtain the ARW in [deg/sqrt(hr)],  
take the value at 1 second and divide it by sixty). At 1 second, the square-root of the  
Allan Variance is 15 deg/hr. This yields an Angular Random Walk (ARW) of 15/60  
deg/sqrt(hr) = 0.25 deg/sqrt(hr) = 0.0042 deg/s/sqrt(Hz) = 15 deg/hr/sqrt(Hz) (assum-  
ing white gyro noise). The bias stability, indicated by the minimum point of the graph,  
is 0.8 deg/hr at a correlation time of 3,000 seconds. Overall, this demonstrates that  
we are utilizing a relatively high-quality MEMS gyro.  
Position error of an unaided, free inertial INS:  
We must distinguish between short-term  
accuracy and long-term accuracy in an inertial navigation system (INS). Additionally,  
it's important to differentiate between arbitrary moving objects, such as aircraft, ships,  
or spacecraft, and land-based vehicles that travel on roads applications character-  
ized by specific motion constraints.  
Long-time accuracy of an arbitrary moving, unaided, free inertial  
INS:  
Definition: An arbitrary moving unaided free inertial INS operates in a mode devoid  
of any external aids, meaning there is no GNSS, magnetometer, air data, Doppler log,  
LiDAR, RF positioning, or ZUPT. In this mode, the INS can move without limitations,  
provided it remains within the measurement range of the inertial sensors.  
iMAR  
10/2024 rev. 2.51 DocNo.: DOC181020012 technical modifications reserved w/o notice  
7(19)  
In this context, the system experiences a position error known as Schuler oscillation.  
This position error, typically measured in nautical miles per hour (nm/hr), reflects the  
global position error of the free inertial INS due to residual accelerometer and gyro  
errors. The oscillation occurs with a period of approximately 84 minutes, as well as  
with a 24-hour cycle. The amplitude of the oscillation is influenced by the accelerom-  
eter offset, while the average position drift, or 'shift,' is affected by gyro drift. This is a  
simplified model for explanatory purposes; further details can be derived from the in-  
ertial differential equations.  
The figure shows such long time behavior of a free inertial navigation (example: data  
obtained from iNAT-RQT over more than 3 days): Link  
This Schuler Oscillation plot displays position error in meters and time in hours. For  
example, the free inertial INS shows a position error of 3 km after 70 hours (equivalent  
to 0.02 nm/hr)  
As illustrated in the plot, it is crucial to clarify how the value of 'free inertial drift' is  
derived. Due to the 24-hour oscillation, you can observe that the position error after  
11 hours is identical to that after 70 hours. The conditions of data acquisition also play  
a significant role: this plot was generated following only 10 minutes of initial alignment.  
Why do some vendors claim much lower free inertial drifts?  
If the INS is aided prior to drift determination (for instance, by operating it with signifi-  
cant motion dynamics and external aids like GNSS), and if the system is aided by an  
EM-log (example: naval vessels, submarines), it is possible to achieve drift values  
below 1 nm per 100 hours, or even over 360 hours. However, it is essential to note  
that this scenario does not represent 'pure inertial, unaided' operation, as the INS  
requires adequate position aiding for a substantial duration (e.g., 12 hours) and at  
least periodical velocity aiding to provide such results. Many datasheets, however, do  
not adequately explain this requirement, nor do they mention that these systems need  
to be temperature-controlled and require significant time for power-up.  
Short-time accuracy of an arbitrary moved unaided INS (free iner-  
tial navigation):  
Definition: A free inertial operating INS functions in a mode devoid of any external  
aidings, meaning no GNSS, magnetometer, air data, Doppler log, LiDAR, RF posi-  
tioning, or other assistance. Short-term operation refers to a duration that is signifi-  
cantly shorter than the Schuler period of 84 minutes (as previously mentioned).  
In this operational mode, the values (expressed in meters or meters per second) are  
relevant for measurements lasting less than approximately 20 to 40 minutes, as  
iMAR  
10/2024 rev. 2.51 DocNo.: DOC181020012 technical modifications reserved w/o notice  
8(19)  
Schuler oscillation is not significant for short-term measurements. An accelerometer  
offset results in a position error that increases quadratically over time.  
delta_s = 0.5 x delta_a x T²  
[m]  
(a)  
with delta_a = accelerometer offset [m/s²] and T = measuring time [s].  
Example for a medium accurate system:  
delta_a = 1 mg 0.01 m/s², T = 100 sec delta_s = 50 m  
The gyro drift delta_omega affects the position error corresponding to the equation  
delta_s = g/6 x delta_omega x T³ [m] (b)  
with delta_omega in [rad/s] and g = 9.81 m/s² .  
An attitude (roll/pitch) error of e.g. delta_attitude affects the position error due to a  
wrong compensation of the gravity on the horizontal IMS axes:  
delta_s = 0.5 x g x sin (delta_attitude) x T²  
[m]  
(c)  
Example, how you can validate manufacturer’s statements  
(with data from a vendor’s datasheet): IXSEA LANDINS  
If a provider promotes an inertial measurement system (IMS) with a roll/pitch accuracy  
of 0.005 degrees and claims a horizontal position error of 0.7 m (and a vertical position  
error of only 0.5 m) after 300 seconds in free inertial navigation modewithout odom-  
eter aiding, without ZUPT, and without internal vibration isolatorsyou can easily ver-  
ify and calculate two key factors using the simple thumb rule equations provided  
above:  
Position error due to 0.005 deg roll or pitch error after 300 sec (free inertial):  
0.5 x 9.81 m/s² x sin(0.005°) x (300 sec)² = 38 m (from equation (c))  
What must be the accelerometer accuracy to achieve 0.7 m after  
300 sec (free inertial)?  
0.7 m / (0.5 x (300 sec)²) = 1.5 µg (!!) absolute accuracy over 300 sec  
(from equ. (a))  
The simple calculations reveal a discrepancy in the reported performance data; either  
the position error must be significantly worse, or the attitude error must be much  
smaller to achieve the advertised specifications. For context, an absolute accuracy of  
1.5 µg in accelerometer bias approaches gravimeter accuracy, yet such reliability is  
typically not available in industrial or military land navigation systems. It's important to  
note that gravity itself changes by approximately 0.3 µg for every meter of elevation!  
Position error of an unaided, pure inertial INS on road vehicles  
(taking only into account motion specific constraints):  
Long-time accuracy of an pure inertial INS without ZUPT aiding:  
Definition: The INS is operated on a land vehicle driving on a road or off-road. The  
vehicle has no capability to fly or to swim – this we call “motion constraints”. The  
vehicle has sufficient grip on the surface. No external aiding is available, i.e. no  
GNSS, no wheel sensor (odometer), no magnetometer, no LiDAR, no RF position-  
ing etc. Over long duration and distance no ZUPT or PUPT shall be required.  
Unaided Road and Outdoor Navigation:  
Condition: No GNSS, no odometer, no RF aiding, no magnetometer aiding - but  
iMAR  
10/2024 rev. 2.51 DocNo.: DOC181020012 technical modifications reserved w/o notice  
9(19)